Haplotype Inference with Boolean Satisfiability

Joao Marques-Silva1 \hspace{1cm} Ines Lynce2

1School of Electronics and Computer Science
University of Southampton

2IST/INESC-ID
Technical University of Lisbon

DSSE, University of Southampton, October 2007
Propositional/Boolean Formulas

- Boolean formula \(\varphi \) is defined over a set of propositional variables \(x_1, \ldots, x_n \), using the standard propositional connectives \(\neg, \land, \lor, \rightarrow, \leftrightarrow \), and parenthesis
 - The domain of propositional variables is \(\{0, 1\} \)
 - Example: \(\varphi(x_1, \ldots, x_3) = (\neg x_1 \land x_2) \lor x_3) \land (\neg x_2 \lor x_3) \)

- A formula \(\varphi \) in conjunctive normal form (CNF) is a conjunction of disjunctions (clauses) of literals, where a literal is a variable or its complement
 - Example: \(\varphi(x_1, \ldots, x_3) = (\neg x_1 \lor x_2) \land (\neg x_2 \lor x_3) \)
 - Note: Can encode any Boolean formula into CNF
Boolean Satisfiability (SAT)

• The Boolean satisfiability (SAT) problem:
 - Find an assignment to the variables x_1, \ldots, x_n such that $\varphi(x_1, \ldots, x_n) = 1$, or prove that no such assignment exists

• SAT is an **NP-complete** decision problem [Cook’71]
 - SAT was the first problem to be shown NP-complete
 - There are no known polynomial time algorithms for SAT
 - 36-year old belief:
 Any algorithm for SAT runs in exponential time in the number of variables, in the worst-case

• In practice...
 - Modern SAT algorithms can solve problems with half a million variables and tens of million clauses
 ▶ Huge search space: $\sim 2^{500,000}$ possible assignments!
 - Note: Adequate modeling is a key issue!
SAT & Bioinformatics

- Remarkable improvements in SAT solvers over the last decade:

<table>
<thead>
<tr>
<th>Instance</th>
<th>Posit’94</th>
<th>Grasp’96</th>
<th>Chaff’01</th>
<th>Siege’04</th>
</tr>
</thead>
<tbody>
<tr>
<td>ssa2670-136</td>
<td>28.53</td>
<td>0.36</td>
<td>0.02</td>
<td>0.01</td>
</tr>
<tr>
<td>bf1355-638</td>
<td>772.45</td>
<td>0.04</td>
<td>0.02</td>
<td>0.01</td>
</tr>
<tr>
<td>design_1</td>
<td>> 7200</td>
<td>65.35</td>
<td>1.27</td>
<td>0.29</td>
</tr>
<tr>
<td>design_3</td>
<td>> 7200</td>
<td>9.13</td>
<td>0.52</td>
<td>0.41</td>
</tr>
<tr>
<td>f_ind</td>
<td>> 7200</td>
<td>4663.89</td>
<td>17.91</td>
<td>6.52</td>
</tr>
<tr>
<td>splitter_42</td>
<td>> 7200</td>
<td>> 7200</td>
<td>28.81</td>
<td>4.46</td>
</tr>
<tr>
<td>c6288</td>
<td>> 7200</td>
<td>> 7200</td>
<td>> 7200</td>
<td>2847.46</td>
</tr>
<tr>
<td>pipe_64_32</td>
<td>> 7200</td>
<td>> 7200</td>
<td>> 7200</td>
<td>> 7200</td>
</tr>
</tbody>
</table>

- Can SAT be used in Bioinformatics?
 - Already many successful applications of SAT
 - Hardware and software model checking, software testing, planning, etc.
The HIPP Problem

- Assume a set G of n strings over the alphabet $\{0, 1, 2\}$ (the genotypes), each with m characters
 - Each character j in a string g_i represented by g_{ij}
 - Example: $g_i = 012$

- A string g_i is explained by two strings over the alphabet $\{0, 1\}$ (the haplotypes), h_a and h_b, iff:
 - If $g_{ij} = 0$, then $h_{aj} = h_{bj} = 0$
 - If $g_{ij} = 1$, then $h_{aj} = h_{bj} = 1$
 - If $g_{ij} = 2$, then $h_{aj} \neq h_{bj}$
 - Example: $g_i = 012$ is explained by $h_a = 010$ and $h_b = 011$

- The HIPP problem is to compute a minimum-size set H of haplotypes such that every genotype in G is explained by two haplotypes in H
 - The HIPP problem is NP-Hard
An Example of the HIPP Problem \((n = 18 \text{ and } m = 5)\)

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>00000</td>
<td>00010</td>
<td>00020</td>
<td>01101</td>
<td>01102</td>
</tr>
<tr>
<td>01200</td>
<td>02000</td>
<td>02020</td>
<td>01200</td>
<td>02000</td>
</tr>
<tr>
<td>02200</td>
<td>02202</td>
<td>02220</td>
<td>02220</td>
<td>02222</td>
</tr>
<tr>
<td>11000</td>
<td>21000</td>
<td>21000</td>
<td>21200</td>
<td>21200</td>
</tr>
<tr>
<td>21202</td>
<td>22000</td>
<td>22000</td>
<td>22020</td>
<td>22020</td>
</tr>
</tbody>
</table>
An Example of the HIPP Problem ($n = 18$ and $m = 5$)

00000 = 00000 ⊕ 00000
00010 = 00010 ⊕ 00010
00020 = 00000 ⊕ 00010
01101 = 01101 ⊕ 01101
01102 = 01100 ⊕ 01101
01200 = 01100 ⊕ 01000
02000 = 00000 ⊕ 01000
02020 = 01000 ⊕ 00010
02200 = 00000 ⊕ 01100
02202 = 00000 ⊕ 01101
02220 = 00010 ⊕ 01100
02222 = 00010 ⊕ 01101
11000 = 11000 ⊕ 11000
21000 = 11000 ⊕ 01000
21200 = 01100 ⊕ 11000
21202 = 01101 ⊕ 11000
22000 = 11000 ⊕ 00000
22020 = 00010 ⊕ 11000

- HIPP solution has size 6
Outline

Haplotype Inference

Haplotype Inference by Pure Parsimony (HIPP)

ILP Models and Variants

SHIPs: SAT-Based HIPP

Experimental Results

Conclusions & Future Work
Outline

Haplotype Inference
 Haplotype Inference by Pure Parsimony (HIPP)

ILP Models and Variants

SHIPs: SAT-Based HIPP

Experimental Results

Conclusions & Future Work
Haplotype Inference

- Single Nucleotide Polymorphisms (SNPs): DNA sequence variation, occurs when a nucleotide (typically A, C, G or T) changes among elements of the same species

- Haplotypes:
 - Encode Single Nucleotide Polymorphisms (SNPs)
 - Each site of a haplotype (describing a SNP) can take value 0 (the wild type) or 1 (the mutant)

- Genotypes:
 - In practice available instead of haplotypes
 - Each genotype describes two haplotypes
 - Each site of a genotype can take value 0, 1 or 2
 - If site is 0 or 1, site is homozygous, and the two haplotypes must coincide at this site
 - If site is 2, site is heterozygous, and the two haplotypes must differ at this site

- Haplotype Inference:
 - Identify set of haplotypes that explain set of genotypes
N’tide -1023 -709 -654 -468 -406 -367 -47 -20 46 79 252 491 523

Alleles G/A C/A G/A C/G C/T T/C T/C T/C G/A C/G G/A C/T C/A

h_1 A C G C C T T T T A C G C C 1000000010000
h_2 A C G G C C C C G G G C C 1001011101000
h_3 G A A C C T T T T A C G C C 0110000010000
h_4 G C A C C T T T T A C G C C 0010000010000
h_5 G C A C C T T T T G C G C C 0010000000000
h_6 G C G C C C T T T T G C A C A 0000000001001
h_7 G C G C C C T T T T G C A T A 000000000111
h_8 G C A C C T T T T A C A C A 0010000010101
h_9 A C G C T T T T T A C G C C 1000100010000
h_{10} G C G C C T T T T G C A C C 0000000001000
h_{11} G C G C C C T T T T G C G C C 0000000000000
h_{12} A C G G C C T T T T A C G C C 1001000010000

• Genotype $g = 0020000020121$ is explained by haplotypes $h_7 = 0000000000111$ and $h_8 = 0010000010101$

• Key uses: haplotype map of the human genome; understanding complex disease genes; inferring population histories; etc.
Haplotype Inference by Pure Parsimony (HIPP)

- The **pure parsimony** criterion:
 - Explain set of genotypes G with the **smallest** number of haplotypes
 - Biological motivation; use the least number of entities that are required to explain natural phenomena

- Example: explain 2120, 2102, and 1221
 - A possible solution (using 6 haplotypes):
 - $2120 = 0100 \oplus 1110$
 - $2102 = 1100 \oplus 0101$
 - $1221 = 1011 \oplus 1101$

 - A **pure parsimony** solution (using 4 haplotypes):
 - $2120 = 0100 \oplus 1110$
 - $2102 = 0100 \oplus 1101$
 - $1221 = 1011 \oplus 1101$
Outline

Haplotype Inference
 Haplotype Inference by Pure Parsimony (HIPP)

ILP Models and Variants

SHIPs: SAT-Based HIPP

Experimental Results

Conclusions & Future Work
RTIP: An Exponential ILP Model I

- For each genotype g_i enumerate all pairs of haplotypes that can explain g_i
 - E.g., genotype $g_i = 212$ explained by pairs (010,111) and (011,110)
 - Note that order of haplotypes is irrelevant

- With each pair r of haplotypes associate a Boolean variable y_{ir}, denoting whether the pair r is selected for explaining g_i
 - E.g., associate y_{i1} with (010,111) and y_{i2} with (011,110)

- Clearly, for each genotype g_i one pair must be selected:
 \[\sum_r y_{ir} = 1 \]
• Associate a Boolean variable x_k with each haplotype h_k, denoting whether h_k is used for explaining a genotype
 - E.g., x_1, x_2, x_3 and x_4 associated respectively with $h_1 = 010$, $h_2 = 111$, $h_3 = 011$ and $h_4 = 110$

• If a pair r of haplotypes is selected (i.e. $y_{ir} = 1$), then the two haplotypes are used
 - If the pair of haplotypes for variable y_{ir} includes h_k, then
 \[y_{ir} \rightarrow x_k \]
 - E.g., associate y_{i1} with (010,111), and associate x_1, x_2 with $h_1 = 010$, $h_2 = 111$; then $y_{i1} \rightarrow x_1$ and $y_{i1} \rightarrow x_2$

• Objective is to minimize number of used haplotypes
 \[
 \min \sum_{k} x_k
 \]
Complete Example

\[x_1 \quad x_2 \]
\[(010, 111) \quad y_{11} \]
\[g_1 = 212 \]
\[(011, 110) \quad y_{12} \]
\[x_3 \quad x_4 \]
\[(001, 011) \quad y_{21} \]
\[x_5 \quad x_3 \]

- Constraints:
 \[y_{11} + y_{12} = 1 \]
 \[y_{21} = 1 \]
 \[y_{11} \rightarrow x_1 \]
 \[y_{11} \rightarrow x_2 \]
 \[y_{12} \rightarrow x_3 \]
 \[y_{12} \rightarrow x_4 \]
 \[y_{21} \rightarrow x_5 \]
 \[y_{21} \rightarrow x_3 \]

- Cost function:
 \[\min \sum_{i=1}^{5} x_i \]
RTIP: An Exponential ILP Model III

- Total number of x variables equals number of candidate haplotypes, which can grow exponentially with the number of genotypes.
- Space complexity is exponential on the number of genotypes.
 - Genotype with k heterozygous sites can be explained by 2^{k-1} pairs of haplotypes.
 - Note that order of haplotypes is irrelevant.
 - E.g., 222022212220222 explained by 2^{12-1} distinct pairs of haplotypes.

- Key pruning technique in RTIP:
 - If genotype g_i can be explained by pair of haplotypes (h_a, h_b), such that both h_a and h_b cannot explain any other genotype, then pair of haplotypes (h_a, h_b) needs not be considered for explaining g_i.
 - If all pairs are discarded for a genotype g_i, then just pick any pair for explaining g_i.
Complete Example (w/ Pruning)

\[g_1 = 212 \]

\[(010, 111) \quad y_{11} \]

\[(011, 110) \quad y_{12} \]

\[x_1 \quad x_2 \]

\[x_3 \quad x_4 \]

\[g_2 = 021 \]

\[(001, 011) \quad y_{21} \]

\[x_5 \quad x_3 \]

• Constraints:
 - \(y_{12} = 1 \)
 - \(y_{21} = 1 \)
 - \(y_{12} \rightarrow x_3 \)
 - \(y_{12} \rightarrow x_4 \)
 - \(y_{21} \rightarrow x_5 \)
 - \(y_{21} \rightarrow x_3 \)

• Cost function:
 \[\min \sum_{i=3}^{5} x_i \]
PolyIP: A Polynomial Size Model I

- Represent 2^n candidate haplotypes with Boolean variables
 - Haplotypes represented with Boolean variables y_{ij}, $1 \leq i \leq 2^n$ and $1 \leq j \leq m$, i.e. m variables for each of the 2^n candidate haplotypes

\[
(y_{11} \cdots y_{1m}) \oplus (y_{21} \cdots y_{2m}) = g_{11} \cdots g_{1m} \\
\vdots \\
(y_{2n-11} \cdots y_{2n-1m}) \oplus (y_{2n1} \cdots y_{2nm}) = g_{n1} \cdots g_{nm}
\]

- Establish conditions for the haplotypes to explain the corresponding genotypes
- Objective is to minimize total number of distinct haplotypes used

- Conditions on the values of the haplotype variables:

 \[
 \begin{align*}
 \text{if } g_{ij} = 0 & \text{ then } y_{2i-1j} = 0 \text{ and } y_{2ij} = 0 \\
 \text{if } g_{ij} = 1 & \text{ then } y_{2i-1j} = 1 \text{ and } y_{2ij} = 1 \\
 \text{if } g_{ij} = 2 & \text{ then } y_{2i-1j} + y_{2ij} = 1
 \end{align*}
 \]
PolyIP: A Polynomial Model II

• Boolean variable $d_{i,l}$ is defined such that $d_{i,l} = 1$ if $h_i \neq h_l$
 – If two haplotypes differ at a site j, then haplotypes differ
 ▶ $y_{i,j} \neq y_{l,j} \rightarrow d_{i,l} = 1$
 – Hence, the conditions for identifying different haplotypes become:
 \[
 y_{i,j} - y_{l,j} \leq d_{i,l} \\
 y_{l,j} - y_{i,j} \leq d_{i,l}
 \]
 ▶ If h_i and h_l differ in at least one site j, then $d_{i,l}$ must be assigned value 1

• x_i variables denote whether h_i is different from all previous haplotypes h_l
 – If h_i is unique then $\sum_{l=1}^{i-1} d_{l,i} = i - 1$; otherwise $\sum_{l=1}^{i-1} d_{l,i} < i - 1$
 – Hence, x_i can be defined as follows:
 \[
 x_i \geq 2 - i + \sum_{l=1}^{i-1} d_{l,i}
 \]
PolyIP: A Polynomial Model III

• Cost function consists of minimizing the number of different haplotypes:

$$\text{minimize } \sum_{i=1}^{2n} x_i$$

• Additional work:
 - Optimizations with the purpose of improving the quality of the LP relaxation step of standard ILP solvers
 - HybridIP represents a hybrid of the RTIP and PolyIP formulations
 ▶ Similar performance for PolyIP and for HybridIP
 ▶ RTIP much more efficient than either PolyIP or HybridIP
An Example

- Genotypes: \(g_1 = 212 \) and \(g_2 = 021 \)

\[
\text{minimize } \sum_{i=1}^{4} x_i \\
\]

\[
\begin{align*}
y_{11} + y_{21} &= 1 \\
y_{12} &= 1 \\
y_{22} &= 1 \\
y_{13} + y_{23} &= 1 \\
y_{31} &= 0 \\
y_{41} &= 0 \\
y_{32} + y_{42} &= 1 \\
y_{33} &= 0 \\
y_{43} &= 0 \\
x_1 &\geq 1 \\
x_2 &\geq d_{12} \\
x_3 &\geq -1 + d_{13} + d_{23} \\
x_4 &\geq -2 + d_{14} + d_{24} + d_{34}
\end{align*}
\]

\[
\begin{align*}
y_{21} - y_{11} &\leq d_{21} & y_{41} - y_{11} &\leq d_{41} \\
y_{11} - y_{21} &\leq d_{21} & y_{11} - y_{41} &\leq d_{41} \\
y_{22} - y_{12} &\leq d_{21} & y_{42} - y_{12} &\leq d_{41} \\
y_{12} - y_{22} &\leq d_{21} & y_{12} - y_{42} &\leq d_{41} \\
y_{23} - y_{13} &\leq d_{21} & y_{43} - y_{13} &\leq d_{41} \\
y_{13} - y_{23} &\leq d_{21} & y_{13} - y_{43} &\leq d_{41} \\
y_{31} - y_{21} &\leq d_{32} & y_{41} - y_{21} &\leq d_{42} \\
y_{21} - y_{31} &\leq d_{32} & y_{21} - y_{41} &\leq d_{42} \\
y_{32} - y_{22} &\leq d_{32} & y_{42} - y_{22} &\leq d_{42} \\
y_{32} - y_{32} &\leq d_{32} & y_{22} - y_{42} &\leq d_{42} \\
y_{33} - y_{23} &\leq d_{32} & y_{43} - y_{23} &\leq d_{42} \\
y_{23} - y_{33} &\leq d_{32} & y_{23} - y_{43} &\leq d_{42} \\
y_{31} - y_{11} &\leq d_{31} & y_{41} - y_{31} &\leq d_{43} \\
y_{11} - y_{31} &\leq d_{31} & y_{31} - y_{41} &\leq d_{43} \\
y_{32} - y_{12} &\leq d_{31} & y_{42} - y_{32} &\leq d_{43} \\
y_{12} - y_{32} &\leq d_{31} & y_{32} - y_{42} &\leq d_{43} \\
y_{33} - y_{13} &\leq d_{31} & y_{43} - y_{33} &\leq d_{43} \\
y_{13} - y_{33} &\leq d_{31} & y_{33} - y_{43} &\leq d_{43} \\
y_{13} - y_{33} &\leq d_{31} & y_{33} - y_{43} &\leq d_{43}
\end{align*}
\]
Structural Simplifications

- There can exist **duplicate genotypes**
 - If two genotypes are identical, they can be explained by the same pair of haplotypes
 - Eliminate duplicate genotypes; Reconstruct eliminated genotypes from computed haplotypes

- There can exist **globally duplicated and globally complemented sites**:

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

 Duplicated column
 Complemented column

 - Eliminate duplicate/complemented columns sites; Reconstruct eliminated columns from computed haplotypes
Outline

Haplotype Inference
 Haplotype Inference by Pure Parsimony (HIPP)

ILP Models and Variants

SHIPs: SAT-Based HIPP

Experimental Results

Conclusions & Future Work
Clearly, the number of haplotypes lies between 1 and $2n$, $1 \leq |H| \leq 2n$

- It is in general possible to find tighter lower and upper bounds on the number of haplotypes (see pubs)

SHIPS iteratively considers increasing numbers of candidate haplotypes

- Start from lower bound lb
 - A trivial value is 1, but can compute better lower bounds
- Terminate for a value of r when all genotypes can be explained by r haplotypes
 - Guaranteed to terminate until $r = 2n$
Model for r Candidate Haplotypes I

- Must select two haplotypes for explaining each genotype g_i
- g variables only needed for sites with value 2
- Candidate haplotypes represented with $r \times m$ Boolean variables (h)
- Selector variables represented with $2 \times r \times n$ Boolean variables (s)
Model for r Candidate Haplotypes II

- Conditions on sites: (with $1 \leq k \leq r$)
 - If $g_{ij} = 0$, add constraints $(s^a_{ki} \rightarrow \neg h_{kj})$ and $(s^b_{ki} \rightarrow \neg h_{kj})$
 - If h_k is used for explaining g_i, then $h_{kj} = g_{ij} = 0$
 - If $g_{ij} = 1$, add constraints $(s^a_{ki} \rightarrow h_{kj})$ and $(s^b_{ki} \rightarrow h_{kj})$
 - If h_k is used for explaining g_i, then $h_{kj} = g_{ij} = 1$
 - If $g_{ij} = 2$:
 - Add variable t_{ij}
 - $t_{ij} = 0$ if g_{ij} explained by 01 pair
 - $t_{ij} = 1$ if g_{ij} explained by 10 pair
 - Add clauses relating h and t variables:
 $$s^a_{ki} \rightarrow (h_{kj} \leftrightarrow t_{ij})$$
 $$s^b_{ki} \rightarrow \neg (h_{kj} \leftrightarrow t_{ij})$$
Model for r Candidate Haplotypes III

- Problem formulation has key symmetries on the h variables:

 \[g_i \]

 \[s_{k1i} = 1 \]
 \[s_{k2i} = 0 \]

 \[s_{k1i} = 0 \]
 \[s_{k2i} = 1 \]

 \[0100 \]
 \[0101 \]

 \[h_{k1} \]
 \[h_{k2} \]

- Enforce an ordering of the Boolean valuations to the haplotypes
 - Require $h_1^\nu < h_2^\nu < \ldots < h_r^\nu$ for any valuation ν
Model for r Candidate Haplotypes IV

- Problem formulation also has key symmetries on the s variables:

\[
\begin{align*}
 s^a_{k_1i} &= 1 \\
 s^a_{k_2i} &= 0 \\
 s^b_{k_1i} &= 0 \\
 s^b_{k_2i} &= 1
\end{align*}
\]
Model for \(r \) Candidate Haplotypes V

- Symmetries on \(s \) variables can be eliminated:
 - Haplotype selected by \(s_{ki}^a \) variables must have index smaller than haplotype selected by \(s_{ki}^b \) variables; with \(k_2 < k_1 \):

\[
\left(s_{k_1 i}^a \rightarrow \bigwedge_{k_2=1}^{k_1-1} \neg s_{k_2 i}^b \right) \quad \text{and} \quad \left(s_{k_2 i}^b \rightarrow \bigwedge_{k_1=k_2+1}^{r} \neg s_{k_1 i}^a \right)
\]
Model for r Candidate Haplotypes V

- Conditions on selector variables:
 - Exactly one haplotype (for a and for b) is selected for each genotype g_i:
 \[
 \left(\sum_{k=1}^{r} s_{ki}^a = 1 \right) \land \left(\sum_{k=1}^{r} s_{ki}^b = 1 \right)
 \]
 - Can be represented with clauses linear in r

- Space complexity of the model:
 - Worst-case ($r = \Theta(n)$): $O(n^2 \times m)$
 - In practice ($r = O(n)$): $O(n \times r \times m)$
 - In practice SAT model significantly more compact than existing ILP models
Two genotypes g_a and g_b are incompatible if at a given site j one genotype has value 0 and the other has value 1

- $g_a = 012$ is incompatible with $g_b = 102$

Can compute clique of mutually incompatible genotypes

- E.g., $g_a = 012$, $g_b = 102$ and $g_c = 110$ are mutually incompatible, and form a clique of size 3
Lower Bounds III

- Use clique for computing a **lower bound** on the number of required haplotypes
 - If genotype in clique has no heterozygous sites, then contribution to the lower bound is 1
 - Otherwise, each genotype in clique contributes 2 to the lower bound

- E.g., for $g_a = 012$, $g_b = 102$ and $g_c = 110$, the computed lower bound is 5
Lower Bounds IV

- Often value of clique-based lower bound can be improved
 - Set of genotypes: \{1002, 1102, 2201, 1221\}
 - Clique with two genotypes: 1002 and 1102, and so lower bound is 4
 - Genotype 2201 is compatible with genotypes in clique, however
 - Due to site 1, explanation of 2201 requires at least one more haplotype, besides the 4 haplotypes required by genotypes in clique
 - Increment lower bound by 1, and generate merged genotype 2202 (from 1002, 1102 and 2201)
 - Genotype 1221 is compatible with all the other genotypes, however
 - Due to site 3, explanation of 1221 requires at least one more haplotype, besides the 5 genotypes already required
 - Increment lower bound by 1, and generate merged genotype 2222 (from 2202 and 1221)
 - Resulting lower bound is 6
Outline

Haplotype Inference

Haplotype Inference by Pure Parsimony (HIPP)

ILP Models and Variants

SHIPs: SAT-Based HIPP

Experimental Results

Conclusions & Future Work
SHIPs – Comparison with existing solutions

- Comprehensive set (1183) of instances; all instances structurally simplified
- SHIPs aborts 87 out of 1183 instances; all others abort significantly more instances
SHIPs – Comparison with RTIP

![Graph showing comparison between SHIPs and RTIP on a log-log scale.](Image)
Outline

Haplotype Inference
 Haplotype Inference by Pure Parsimony (HIPP)

ILP Models and Variants

SHIPs: SAT-Based HIPP

Experimental Results

Conclusions & Future Work
Conclusions & Ongoing Work

- The HIPP problem is a key computational problem in bioinformatics, and is a new strategic application for SAT

- **SAT-based HIPP model**
 - Compact model
 - Orders of magnitude speedup wrt to previous solutions
 - Albeit a few outliers exist

- More recent work
 - Solving HIPP with pseudo-Boolean constraints
 - Often outperforms SHIPs
 - Resulting model is larger than SHIPs
References

• **SHIPs SAT model:**

• **RPoly PBO model:**
